Activate javascript in your browser!

MICROTUBES HEAT EXCHANGER
the most ISENTROPIC CONCEPTION (for a given compactness)
typical applications
Hot fluid
bar    Inlet Pressure
K      Inlet temperature
Cold fluid
bar    Inlet Pressure
K      Inlet temperature
Structure
MW/m3     compactness

Exchanger side view

Section A-A


Cell detail view


Structure E GPa    R MPa   work in   k=e/(c-e)   P bar
Cell optimized in order to minimize entropic creation per exchanged thermal unit
surface A m²   side c mm   thickness e µm   T°slope dT/dx K/m
length L m    linear heat transfer QT W/m    temperature drop deltaT K  
fluid pressure drop: cold Pa=N/m2   hot Pa    effectiveness %  
consumption exergeticW / exchangedKW    Heat-transfer surface / weight m²/kg
Power/weight KW/kg    thermal Response time seconds   
Heat Exchanger dimensioning:    desired power KW  
number of cells    side of the exchanger of square section m  
mass (except ends) kg   fluid mass-flow  hot kg/s    cold kg/s   
Ends connection by extrusion mould shift

The cells optimization is the best compromise on the 4 following points of calculation, towards minimal entropy creation
Hot Fluid Inlet   K    P bar   T K   rho kg/m3   eta µPa.s   lambda W/mK  CP J/kg.K   dxH J/mKg   DM Kg/s   FDm3/s   Um/s   Re   PMPa/m   EFW/m.K    QLW   ELW/m.K   dTK   ETW/m.K  ECW/m.K
Hot Fluid Outlet   K    P bar   T K   rho kg/m3   eta µPa.s   lambda W/mK  CP J/kg.K   dxH J/mKg   DM Kg/s   FDm3/s   Um/s   Re   PMPa/m   EFW/m.K    QLW   ELW/m.K   dTK   ETW/m.K  ECW/m.K
Cold Fluid Inlet   K    P bar   T K   rho kg/m3   eta µPa.s   lambda W/mK  CP J/kg.K   dxH J/mKg   DM Kg/s FDm3/s   Um/s   Re   PMPa/m   EFW/m.K    QLW   ELW/m.K   dTK   ETW/m.K  ECW/m.K
Cold Fluid Outlet   K    P bar   T K   rho kg/m3   eta µPa.s   lambda W/mK  CP J/kg.K   dxH J/mKg   DM Kg/s FDm3/s   Um/s   Re   PMPa/m   EFW/m.K    QLW   ELW/m.K   dTK   ETW/m.K  ECW/m.K
K: longitudinal conductivity /
fluid conductivity
P: local pressure of the fluid
T: absolute temperature of the fluid
rho: density of the fluid
eta: dynamic viscosity of the fluid
lambda: thermal conductivity of the fluid
CP: fluid mass heat capacity
dxH: longitudinal gradient of enthalpy
DM: alveolar mass throughput
FD: alveolar volume throughput
U: flow speed
Re: Reynolds number
PM: metric loss of pressure
QL: longitudinal heat flow
dT: temperature drop fluid-wall
EF: entropy from friction
EL: entropy from longitudinal flow
ET: entropy from transverse flow
EC: total entropy creation


Here you can ask a question
SYNOPSIS